

Lodge Pole Pine

REFERENCE MATERIAL

Pedigree

Institution: Tricon Lumber Received at INL: 2014

Location: Mineral County, MT Sample Preparation: Ground 2-inch chips to pass through a 1-inch sieve

Harvested: 2014 using a Vermeer BG480 grinder then material was dried in a drum dryer

Composition

Table 1. Chemical composition^a of Reference Lodge Pole Pine

%Structural Ash	%Extractable Inorganics	%Structural Protein	%Extractable Protein	%Water Extracted Glucan ^b	
0.27	0.13	0.35	0.06	0.13	
%Water Extracted Xylan ^b	%Water Extractives Others	%EtOH Extractives	%Lignin	%Glucan	
0.04	2.39	1.74	30.50	41.37	
%Xylan	%Galactan	%Arabinan+Mannan ^c	%Acetic Acid	%Total	
5.90	2.84	12.30	1.17	99.18	

^aDetermined using NREL "Summative Mass Closure" LAP (NREL/TP-510-48087)

Proximate, Ultimate & Calorimetry

Table 2. Proximate, ultimate, and calorific values for Reference Lodge Pole Pine (reported on a dry basis)

Proximate ^a			Ultimate ^b			Calorimetry ^c	
%Volatile	%Ash	%Fixed Carbon	%Hydrogen	%Carbon	%Nitrogen	HHV	LHV
84.50	1.08	14.41	6.06	50.14	Below detection limit	8760	7371

^aProximate analysis was done according to ASTM D 5142-09

^bDetermined by HPLC following an acid hydrolysis of the water extractives

^c%Arabinan value includes %mannan, because arabinose and mannose co-elute on the HPLC column

^bUltimate analysis was conducted using a modified ASTM D5373-10 method (Flour and Plant Tissue Method) that uses a slightly different burn profile

^cHeating values (HHV, LHV) were determined with a calorimeter using ASTM D5865-10

Elemental Ash

Table 3. Elemental ash composition^a of Reference Lodge Pole Pine

%Al as Al ₂ O ₃	%Ca as CaO	%Fe as Fe ₂ O ₃	%K as K₂O		%Mn as MnO			%Si as SiO₂	%Ti as TiO₂	%S as SO₃
5.19	10.98	6.87	7.63	3.24	0.53	6.94	1.57	44.26	0.23	3.19

^aDetermined as described in ASTM standards D3174, D3682 and D6349

Particle Characteristics

Figure 1. Cumulative passing percent of 1-inch Reference Lodge Pole Pine determined according to ANSI/ASAE S319.4 using a Ro-Tap test sieve shaker (Model RX-29, W.S. Tyler) and a 15 minute total sieving time. The cumulative passing percentile sieve sizes (e.g., t_{16}) were calculated by interpolation and represent theoretical sieve sizes that would retain 16, 50 or 84% of the particles by mass.

Contact

For questions regarding biomass material or analytical data please contact Dr. Garold Gresham at garold.gresham@inl.gov or 208-526-6684.